Meet Charlie, Belgium's most helpful customer support chatbot

Charlie is Argenta’s virtual assistant. She lives within the Argenta mobile banking app and helps answer customers’ questions and complete transactions. But what makes her so helpful? She only chats when she’s confident she can answer the question.

Hey there! I'm Charlie, your Argenta assistant. ✋
Ask about your banking needs. I'm here to help! 💸
Scroll down to read the full case ↓
the problem

How can we make a chatbot that improves customer experience?​

Argenta is the fifth-largest bank in Belgium and its customer support team receives 20,000+ messages per month. It was impossible for their team of 23 agents to keep up. They were overloaded and overworked.

During the discovery phase of the project, we identified three areas where the agents were losing the most time:

1. Basic FAQs

2. Basic intent detection and data capture for specific transactional flows

3. Conditional data detection and capture for increasing daily limits

Argenta is known for its excellent customer service and wanted to ensure that customer satisfaction remained stable or improved when introducing the bot to its customers. With this specific challenge in mind, we introduced a few custom solutions that take Charlie from being a basic bot to a great bot.

the solution

Charlie is a chatbot with a clear scope and near-perfect NLP model​

Charlie only chats when she’s confident she can help​

Latching onto the concept that Charlie should maintain the status quo or improve customer satisfaction, we pivoted and approached her introduction differently: She’s a very respectable lady and only introduces herself when she’s at least 85% sure she has the right answer.

How is this possible? We developed a unique introduction and fallback system so that if she knows the answer, she shares it. If she doesn’t, the conversation gets routed to a live agent, and the customer has the same experience they would normally have pre-Charlie.

Conversation where Charlie is 62% sure of the right answer and immediately hands it off to a live agent to support

The only change for the customer is that if their question can be automated, they receive an instant answer instead of queueing for a live agent. It’s a win-win for the customer and the support team because both save time! The customer doesn’t waste time queueing for a live agent and the live agent doesn’t waste time answering a question that Charlie could easily automate.

Conversation where Charlie is 97% sure of the right answer

Charlie has pre-defined areas of expertise​

By not introducing herself unless she’s confident in the answer, Charlie doesn’t need to know everything. Together with the customer service team, we defined a clear scope of easy-to-answer, frequently asked questions. This translated into 30-40 intents covering approximately 15% of all incoming questions.

Beginning with a small set of intents enabled us to test, train and monitor Charlie’s natural language processing (NLP) model to near perfection. When we first introduced her to real customers, we reviewed every interaction to ensure that she said the right thing and created a net positive customer experience. After a few weeks of intense monitoring and some minor tweaks, it became clear that Charlie knew what she was talking about and was ready to work independently.

Charlie clarifies doubt instead of defaulting to “I don’t know”​

The vocabulary associated with banking is complex and nuanced. Since many banking intents overlap with one another, we usually recommend working with entities, such as debit card, credit card, limit, etc. Using contextual entities, we built a unique entity fallback system. If Charlie’s between 70-85% sure of the intent, then she rephrases the intent as a question to confirm her suspicions. If she recognizes an entity, she responds with a custom menu that proposes the most asked intents related to that entity.

Conversation where Charlie is 75% sure of the intent and confirms her understanding with a question

Charlie automates data capture to save everyone time​

Basic data capture is a time-sink for a live agent. It can take up to 10 min. for a user to respond with their name, address, email and phone number. That’s valuable time that an agent could use on more complex conversations.

One of customers’ most frequently requested items is a new card reader. The batteries expire over time and customers ask for a replacement. This question is easy for a bot to recognize, so instead of bothering a live agent with this simple request, Charlie detects when a user is asking for a new card reader and responds with a data capture flow that captures the user’s name, address, email, etc. Charlie then forwards that information and the new card reader request to a specific team within Argenta, where they check the request and prep the card reader for dispatch.

Converting a frequently requested manual process into a conversational flow saves Argenta time and provides users with an immediate solution

Another frequently asked question is how customers can increase their daily transactional limit. For certain amounts, it’s an easy fix that Charlie can automate. But for amounts that exceed Є25,000, the customer needs to answer some questions. Charlie can detect when a customer wants to increase their daily limit and can also detect if the amount exceeds Є25,000 so she can already get answers to the questions before handing the conversation off to a live agent to make the final limit adjustment.

Charlie helps a user adjust their limit to Є13,000
the results

Charlie is a chatbot loved by colleagues and customers​

Charlie saved the customer support team 24 days (192 hours) of work in the first month and a half, and they’re grateful for her help. Independently, Charlie manages 20%+ of the incoming customer conversations end-to-end.

Our new colleague Charlie is doing really well. Because of her quick reaction to simple questions, we can focus on the real work 😉​

   Ilke Schiltz, Customer Support Agent @ Argenta

The most triggered flow was increasing daily transactional limits, followed by requesting a new card and then a new card reader. As Charlie continues to engage with and help customers, we’ll broaden her banking knowledge so that she continues to save the customer support team time.


Talk with a human

If you want to discuss AI in more detail, then reach out to Alexis.

He's ready to chat in French, English and Greek.

Talk with Alexis →
Try to break me!
👋 Chat with Marshall Mallow